• x

DK14-2100 | Brown Binding resin

Harmonization Code : 3907.30.00.90 |   Polyacetals, other polyethers and epoxide resins, in primary forms; polycarbonates, alkyd resins, polyallyl esters and other polyesters, in primary forms : Epoxide resins : Other
Main features
  • Low shrinkage
  • Low moisture absorption
  • Binding resin and Coating powder

Product Description

DK14-2100 was designed for the purpose of meeting both the binding resin, and coating powder requirements while also achieving the higher thermal class requirements. Due to the epoxy powder it has excellent green strength that holds the powdered metal together post pressing but pre curing.
 
DK14-2100 is a low shrinkage binding resin that reduces core stress to minimize the effect on magnetic and inductance properties. At the same time its low moisture absorption allows it to maintain superior physical and magnetic properties when exposed to humidity. This "best of both worlds" product  also has a higher Tg allowing it to meet the thermal class rating of a Class F powder at 155°C and display no degradation in color or physical properties.
Product Family
DK1037  
EU Bag Drum (113.4 kg)

Catalog Product

Unlike other products we offer, the products listed on this page cannot currently be ordered directly from the website.
Shipping in 8 - 12 weeks Shipping in 8 - 12 weeks

Technical Specifications

General Properties
Bulk Density
Bulk Density
The amount of a certain product that comes in a bulk.
0.74 g/cm3
Color
Color
The color
Brown
Specific Gravity
Specific Gravity
Specific gravity (SG) is the ratio of the density of a substance to the density of a reference substance; equivalently, it is the ratio of the mass of a substance to the mass of a reference substance for the same given volume.

For liquids, the reference substance is almost always water (1), while for gases, it is air (1.18) at room temperature. Specific gravity is unitless.
1.75
Particle Size
Particle Size thru 325 mesh 26 %
Particle Size thru 80 mesh 100 %
Chemical Properties
Moisture Absorption
Moisture Absorption
Moisture absorption shows the capacity of a polymer to absorb moisture from its environment.

Absorbed moisture can reduce the glass transition temperature and strength of a polymer and can also result in popcorning, unreliable adhesion or voids in the bond line due to moisture desorption or entrapment.

Moisture absorption should always be mentioned with the test conditions to provide a meaningful frame of reference.
Moisture absorption - 24h @ PCT 0.30 %
Mechanical Properties
Edge Coverage 34.2 %
Electrical Properties
Cut Through Temperature
Cut Through Temperature
the thermal resistance temperature/ durability
380 °C
Dielectric Strength
Dielectric Strength
Dielectric strength is measured in kV per mm and is calculated by the Breakdown voltage divided by the thickness of the tested material.

Those two properties go hand in hand and while Breakdown voltage is always thickness dependent, dielectric strength is a general material property.

As an example, the dielectric strength of Polyimide is 236 kV/mm. If we place 1mm of Polyimide between two electrodes, it will act as an insulator until the voltage between the electrodes reaches 236 kV. At this point it will start acting as a good conductor, causing sparks, potential punctures and current flow.
39 kV/mm
Thermal Properties
Coefficient of Thermal Expansion (CTE)
Coefficient of Thermal Expansion (CTE)
CTE (Coefficient of thermal expansion) is a material property that is indicative of the extent to which a material expands with a change in temperature. This can be a change in length, area or volume, depending on the material.

Knowing the CTE of the layers is helpful in analyzing stresses that might occur when a
system consists of an adhesive plus some other solid component.
Coefficient of Thermal Expansion (CTE), α1
Coefficient of Thermal Expansion (CTE), α1
CTE α1 (alpha 1) is the slope of the Coefficient of thermal expansion in a temperature range below the Glass transition temperature (Tg).

It explains how much a material will expand until it reaches Tg.
40 ppm/°C
Coefficient of Thermal Expansion (CTE), α2
Coefficient of Thermal Expansion (CTE), α2
CTE α2 (alpha 2) is the slope of the Coefficient of thermal expansion in a temperature range above the Glass transition temperature (Tg).

It explains the extent to which a material will expand after it passes Tg.
123 ppm/°C
Gel Time
Gel Time
Gel time is the time it takes for a material to reach such a high viscosity (gel like) that it is no longer workable.

It is usually measured for different temperature conditions and even though it does not refer to full cure it is advisable to never move or manipulate the material after it reached its gel time since it can lose its desired end properties.
Gel Time @ 160°C / 320°F 18 sec
Glass Plate Flow
Glass Plate Flow @ 150°C
Glass Plate Flow @ 150°C
Glass plate flow determines the flow distance of thermosetting epoxies, resins or coating powders on a smooth inclined glass surface in a certain time and temperature.

This value is the distance in millimetres from the upper point of the original position of the pellet to the point of extreme flow.
22 mm
Glass Transition Temperature (Tg)
Glass Transition Temperature (Tg)
The glass transition temperature for organic adhesives is a temperature region where the polymers change from glassy and brittle to soft and rubbery. Increasing the temperature further continues the softening process as the viscosity drops too. Temperatures between the glass transition temperature and below the decomposition point of the adhesive are the best region for bonding.

The glass-transition temperature Tg of a material characterizes the range of temperatures over which this glass transition occurs.
155 °C
Other Properties
RoHS Compliant
RoHS Compliant
RoHS is a product level compliance based on a European Union Directive which restricts the Use of certain Hazardous Substances in Electrical and Electronic Equipment (RoHS).

Products compliant with this directive do not exceed the allowable amounts of the following restricted materials: lead, mercury, cadmium, hexavalent chromium, polybrominated biphenyls (PBB) and polybrominated diphenyl ethers (PBDE), with some limited exemptions
Yes

Additional Information