Hysol GR640HV-L1 | Black Epoxy Mold Compound

Harmonization Code : 3907.30.00.90 |   Polyacetals, other polyethers and epoxide resins, in primary forms; polycarbonates, alkyd resins, polyallyl esters and other polyesters, in primary forms : Epoxide resins : Other
Main features
  • Improved electrical performance version of GR640HV
  • Ideal for TO, SMX and SOT/SOD Packages
  • JEDEC 1 260°C capable product

Product Description

Hysol GR640HV-L1 is a black, heat-curable epoxy molding compound that delivers outstanding performance and ease of use. This material is designed to achieve JEDEC Level 1 requirements at 260°C reflow temperature.  It is an improved version of GR640HV with better electrical performance version. 

Hysol GR 640HV-L1 is a "Green" low stress product with low cost of ownership that meets the strict MSL1 JEDEC requirements. It is designed for  semiconductor discrete packages such as TO220, TO247 and other TO packages, SMA, SMB and other SMX packages and Transformers. It is developed for eutectic bonding and not for die attach bonding. In eutectic bonding, an intermediate metal layer that forms a eutectic composition with either or both of the bonded components is used. Eutectic bonding is a low-temperature process, which is beneficial for temperature-sensitive applications where high temperatures affect the integrity of the device components. It is important to check the compatibility of Hysol GR640HV-L1 with the bonding process to maximize its excellent moisture sensitivity capability. GR640HV-L1 meets UL 94 V-0 Flammability at ¼ inch thickness.

 
Product Family
GR640HV-L1  
Pellet
14 mm 35 mm
2.7 gr 4.3 gr 41 gr 68 gr
15 kg

Catalog Product

Unlike other products we offer, the products listed on this page cannot currently be ordered directly from the website.

Technical Specifications

General Properties
Color
Color
The color
Black
Filler Content 75 %
Specific Gravity
Specific Gravity
Specific gravity (SG) is the ratio of the density of a substance to the density of a reference substance; equivalently, it is the ratio of the mass of a substance to the mass of a reference substance for the same given volume.

For liquids, the reference substance is almost always water (1), while for gases, it is air (1.18) at room temperature. Specific gravity is unitless.
1.85
Shelf Life
Shelf Life
Shelf life is the amount of time after manufacturing that a product is guaranteed to retain its properties.

It differs vastly per product and it is based on temperature and storage conditions.

The properties can be guaranteed for the temperature and time range indicated on the TDS since those are the ones tested to be the best for the product.
Shelf Life @ 5°C 365 days
Physical Properties
Spiral Flow @ 175°C 71 cm
Chemical Properties
Ionic Content
Chloride (Cl-)
Chloride (Cl-)
The amount of Chloride (Cl-) ion extracted from the product in parts per million (ppm)
21 ppm
Sodium (Na+)
Sodium (Na+)
The amount of Sodium (Na+) ion extracted from the product in parts per million (ppm)
6 ppm
Moisture absorption 0.42 %
Electrical Properties
Volume Resistivity
Volume Resistivity
Volume resistivity, also called volume resistance, bulk resistance or bulk resistivity is a thickness dependent measurement of the resistivity of a material perpendicular to the plane of the surface.
1.2x1016 Ohms⋅cm
Thermal Properties
Coefficient of Thermal Expansion (CTE)
Coefficient of Thermal Expansion (CTE)
CTE (Coefficient of thermal expansion) is a material property that is indicative of the extent to which a material expands with a change in temperature. This can be a change in length, area or volume, depending on the material.

Knowing the CTE of the layers is helpful in analyzing stresses that might occur when a
system consists of an adhesive plus some other solid component.
Coefficient of Thermal Expansion (CTE), α1
Coefficient of Thermal Expansion (CTE), α1
CTE α1 (alpha 1) is the slope of the Coefficient of thermal expansion in a temperature range below the Glass transition temperature (Tg).

It explains how much a material will expand until it reaches Tg.
16 ppm/°C
Coefficient of Thermal Expansion (CTE), α2
Coefficient of Thermal Expansion (CTE), α2
CTE α2 (alpha 2) is the slope of the Coefficient of thermal expansion in a temperature range above the Glass transition temperature (Tg).

It explains the extent to which a material will expand after it passes Tg.
58 ppm/°C
Gel Time
Gel Time
Gel time is the time it takes for a material to reach such a high viscosity (gel like) that it is no longer workable.

It is usually measured for different temperature conditions and even though it does not refer to full cure it is advisable to never move or manipulate the material after it reached its gel time since it can lose its desired end properties.
Gel Time @ 175°C / 347°F 28 s
Glass Transition Temperature (Tg)
Glass Transition Temperature (Tg)
The glass transition temperature for organic adhesives is a temperature region where the polymers change from glassy and brittle to soft and rubbery. Increasing the temperature further continues the softening process as the viscosity drops too. Temperatures between the glass transition temperature and below the decomposition point of the adhesive are the best region for bonding.

The glass-transition temperature Tg of a material characterizes the range of temperatures over which this glass transition occurs.
165 °C
UL 94 Rating
UL 94 Rating
Flammability rating classification.
It determines how fast a material burns or extinguishes once it is ignited.

HB: slow burning on a horizontal specimen; burning rate less than 76 mm/min for thickness less than 3 mm or burning stops before 100 mm
V-2: burning stops within 30 seconds on a vertical specimen; drips of flaming particles are allowed.
V-1: burning stops within 30 seconds on a vertical specimen; drips of particles allowed as long as they are not inflamed.
V-0: burning stops within 10 seconds on a vertical specimen; drips of particles allowed as long as they are not inflamed.
5VB: burning stops within 60 seconds on a vertical specimen; no drips allowed; plaque specimens may develop a hole.
5VA: burning stops within 60 seconds on a vertical specimen; no drips allowed; plaque specimens may not develop a hole
V0
Curing Conditions
Curing Schedule
Curing Schedule
Curing schedule is the time and temperature required for a mixed material to fully cure. While this applies to materials that cure with heat, there are also other materials that can be cured with UV.

Even though some materials can cure on ambient temperatures, others will require elevated temperature conditions to properly cure.

There are various curing schedules depending on the material type and application. For heat curing, the most common ones are Snap cure, Low temperature cure, Step cure and Staged cure.

Recommended cure type, schedule, time and temperature can always be found on the Technical data sheets.
Curing Time @ 175°C / 347°F (Automold) 50 - 90 s
Curing Time @ 175°C / 347°F (Conventional Mold) 60 - 120 s
Mold Temperature 150 - 195 °C
Preheat Temperature 80 - 100 °C
Post Mold Cure
Post Mold Cure @ 175°C / 347°F 4 - 8 hrs
Transfer Pressure 40 - 100 kg/cm2
Transfer Time 10 - 15 s