

AEMION^{+®} ELECTROLYSIS OFFERINGS

Anion Exchange Membranes & Polymers

111-2386 East Mall Vancouver, BC Canada V6T 1Z3

PRODUCT INFORMATION

Ionomr designs and manufactures breakthrough advanced ion-exchange materials to enable rapid growth of the hydrogen economy. Ionomr Anion Exchange membranes are significantly tougher than their counterparts in industry, leading to thinner membranes, longer service life and reduced overall system costs.

They have low ionic resistance, high electrical resistance, and strong chemical stability in solutions of both high and low pH, including concentrated alkaline solutions up to 3 M at 80 °C.

Ionomr's advanced anion exchange membranes and polymers are a breakthrough in material science with a unique hydrocarbon structure and the strongest alkaline stability available, making it the only product of its kind. Aemion^{+®} provides specialized solutions to OEMs with unique application challenges.

Aemion^{+®} represents a fundamental shift in anion exchange technology. Through Aemion^{+®}, we provide a platform to enable simultaneous performance and lifetime improvements in clean technologies while further reducing their environmental impact.

For use in electrolysis applications including AEM water electrolysis & CO₂ Electrolysis, hydrocarbon based Aemion^{+®} membranes and polymers can be utilized in the harshest of conditions and paired with its high performance, unlocks many end use applications that were previously constrained by the membrane's integrity.

Aemion^{+®} enables electrochemical systems without the need for precious metals (commonly platinum and iridium), enabling a pathway for the production of energy-efficient and low-cost green hydrogen as well as profitible carbon capture and utilization technologies.

Thickness and Reinforcement Properties

Membrane Type Typical TI	hickness (µm)	IEC¹ (meq/g)	Reinforcement
AF2-HLE8-15-X	15	2.3 - 2.6	Non-woven Polyolefi
Physical Properties ²	MD	TD	Test Method
Tensile Strength, MPa	> 60	> 100	ASTM 638
Young's Modulus, MPa	600 - 950	600 - 920	ASTM 638
Elongation to break, %	50 - 60	50 - 60	ASTM 638
Hydrolytic Properties ³			
Water Uptake			
to water soaked, 22 °C	< 30	%	ASTM D570
to water soaked, 80 °C	< 50	%	ASTM D570
Linear Expansion			
to water soaked, 22 °C	< 1.5%		ASTM D570
to water soaked, 80 °C	< 2.5%		ASTM D570
Z-Expansion			
to water soaked, 22 °C	< 35%		ASTM D570
to water soaked, 80 °C	< 80%		ASTM D570
Electrochemical Properties			
Area Resistance, mΩ • cm²	< 30		Internal ⁴
Hydrogen Crossover Current, mA/cm²	< 2		150 kPa _g 5
Slope, mA/cm²/kPa	< 0.01		
Chemical Stability			
Max. Recommended Condition	3 M KOH, 80 °C		Internal ⁶
Other Properties			
Maximum Processing Temperature	105 °	С	
Polymer Tg	> 300 °C		
Counter-ions	I-/CI	-	

- 1 IEC in the hydroxide (OH-) counter-ion form.
- 2 Measured at 22 °C in atmospheric condition
- 3 Measured from dried to equilibrated in DI water at 22 °C
- 4 Measured in water electrolysis conditions at 60 °C, 1 M KOH, OCV
- 5 Measured in AEM fuel cell conditions with GDE configuration at 60 °C, 100% RH $\,$
- 6 Measured ex-situ by change in mechanical strength, conductivity & IEC after soaking electrolyte

Thickness and Reinforcement Properties

Membrane Type Ty	pical Thickness (µm)	IEC¹ (meq/g)	Reinforcement
AF2-HLE8-50-X	50	2.3 - 2.6	Non-woven Polyolefir
Physical Properties ²	MD	TD	Test Method
Tensile Strength, MPa	> 45	> 50	ASTM 638
Young's Modulus, MPa	600 - 800	600 - 800	ASTM 638
Elongation to break, %	70 - 75	65 - 75	ASTM 638
Hydrolytic Properties ³			
Water Uptake			
to water soaked, 22 °C	< 159	%	ASTM D570
to water soaked, 80 °C	< 259	%	ASTM D570
Linear Expansion			
to water soaked, 22 °C	< 5%	< 5%	
to water soaked, 80 °C	< 5%	< 5%	
Z-Expansion			
to water soaked, 22 °C	< 25	< 25%	
to water soaked, 80 °C	< 40	< 40%	
Electrochemical Properties			
Area Resistance, mΩ • cm²	50 -	50 - 100	
Hydrogen Crossover Current, m	A/cm ² < 2	< 2	
Slope, mA/cm²/kPa	< 0.0	< 0.005	
Chemical Stability			
Max. Recommended Condition	з м кон,	3 M KOH, 80 °C	
Other Properties			
Maximum Processing Temperato	re 105 °	105 °C	
Polymer Tg	> 300	> 300 °C	
Counter-ions	I-/CI	I-/CI-	
Natas			

- 1 IEC in the hydroxide (OH-) counter-ion form.
- 2 Measured at 22 °C in atmospheric condition
- 3 Measured from dried to equilibrated in DI water at 22 °C
- 4 Measured in water electrolysis conditions at 60 °C, 1 M KOH, OCV
- 5 Measured in AEM fuel cell conditions with GDE configuration at 60 °C, 100% RH
- 6 Measured ex-situ by change in mechanical strength, conductivity & IEC after soaking electrolyte

Thickness and Reinforcement Properties

Membrane Type Ty	/pical Thickness (μm)	IEC¹ (meq/g)	Reinforcement
AF2-HWP8-75-X	75	2.3 - 2.6	Woven Polyolefir
Physical Properties ²	MD	TD	Test Method
Tensile Strength, MPa	> 40	> 40	ASTM 638
Young's Modulus, MPa	500 - 700	500 - 600	ASTM 638
Elongation to break, %	30 - 40	30 - 40	ASTM 638
Hydrolytic Properties ³			
Water Uptake			
to water soaked, 22 °C	< 45	%	ASTM D570
to water soaked, 80 °C	< 50	%	ASTM D570
Linear Expansion			
to water soaked, 22 °C	< 59	< 5%	
to water soaked, 80 °C	< 59	< 5%	
Z-Expansion			
to water soaked, 22 °C	< 10	%	ASTM D570
to water soaked, 80 °C	< 15	< 15%	
Electrochemical Properties			
Area Resistance, mΩ • cm²	< 150	< 150	
Hydrogen Crossover Current, m	A/cm ² < 1.5	< 1.5	
Slope, mA/cm²/kPa	< 0.0	06	
Chemical Stability			
Max. Recommended Condition	з м кон,	3 M KOH, 80 °C	
Other Properties			
Maximum Processing Temperato	ure 105 °	С	
Polymer Tg	> 300	°C	
Counter-ions	I ⁻ /CI	-	

- 1 IEC in the hydroxide (OH-) counter-ion form.
- 2 Measured at 22 °C in atmospheric condition
- 3 Measured from dried to equilibrated in DI water at 22 °C
- 4 Measured in water electrolysis conditions at 60 °C, 1 M KOH, OCV
- 5 Measured in AEM fuel cell conditions with GDE configuration at 60 °C, 100% RH
- 6 Measured ex-situ by change in mechanical strength, conductivity & IEC after soaking electrolyte

Thickness and Reinforcement Properties

Membrane Type Typic	al Thickness (µm)	IEC¹ (meq/g)	Reinforcement	
AF2-HWP8-100-X	100	2.3 - 2.6	Woven Polyolefir	
Physical Properties ²	MD	TD	Test Method	
Tensile Strength, MPa	> 40	> 40	ASTM 638	
Young's Modulus, MPa	600 - 1000	600 - 1000	ASTM 638	
Elongation to break, %	30 - 42	30 - 52	ASTM 638	
Hydrolytic Properties³				
Water Uptake				
to water soaked, 22 °C	< 40	9%	ASTM D570	
to water soaked, 80 °C	< 50	%	ASTM D570	
Linear Expansion				
to water soaked, 22 °C	< 5%		ASTM D570	
to water soaked, 80 °C	< 5%		ASTM D570	
Z-Expansion				
to water soaked, 22 °C	< 15%		ASTM D570	
to water soaked, 80 °C	< 20	< 20%		
Electrochemical Properties				
Area Resistance, mΩ • cm²	< 150		Internal ⁴	
Hydrogen Crossover Current, mA/cn	n² < 1.5	< 1.5		
Slope, mA/cm²/kPa	< 0.0	< 0.005		
Chemical Stability				
Max. Recommended Condition	3 M KOH, 80 °C		Internal ⁶	
Other Properties				
Maximum Processing Temperature	105 9	°C		
Polymer Tg	> 300	°C		
Counter-ions	I ⁻ /C	I-/CI-		

- 1 IEC in the hydroxide (OH $\mbox{^-})$ counter-ion form.
- 2 Measured at 22 °C in atmospheric condition
- 3 Measured from dried to equilibrated in DI water at 22 °C
- 4 Measured in water electrolysis conditions at 60 °C, 1 M KOH, OCV 5 Measured in AEM fuel cell conditions with GDE configuration at 60 °C, 100% RH
- 6 Measured ex-situ by change in mechanical strength, conductivity & IEC after soaking electrolyte

AEMION^{+®} IONOMERS: DRY RESIN

lonomer Type	IEC¹ (meq/g)	Conductivity Cl ⁻ /l ⁻ (mS/cm)	Water Uptake² OH ⁻ (%)	Water Uptake² Cl ⁻ /l ⁻ (%)
AP2-HNN8-00	2.3 - 2.6	8 - 11	95 - 100	20 - 60
AP2-HNN5-00	1.4 - 1.7	2 - 4	35 - 50	20 - 45
AP2-HNN2-00	0.5 - 0.6	1.3 - 2.5	13 - 15	10 - 20

Notes

These are prototype materials only intended to be used for early development activities and not intended for production items. Product information is to be used as a guide only, subject to change at any time.

¹ IEC in the hydroxide (OH-) counter-ion form.

² Approximate swelling properties when cast into membrane form at 25 - 50 μm

Document ID	Title			
FM-6028-A	Properties of Aemion⁺™	Properties of Aemion⁺™ Water Electrolysis Membranes		
Revision	Prepared By	Approved By	Effective Date	
A	Omid Toussi	Ben Britton	March 30, 2021	

REVISION HISTORY:

Revision	Date	Description of Changes	Approved By
Α	March 30, 2021	Initial Draft	Ben Britton

These are prototype materials only intended to be used for early development activities and not intended for production items. Product information is to be used as a guide only, subject to change at any time.