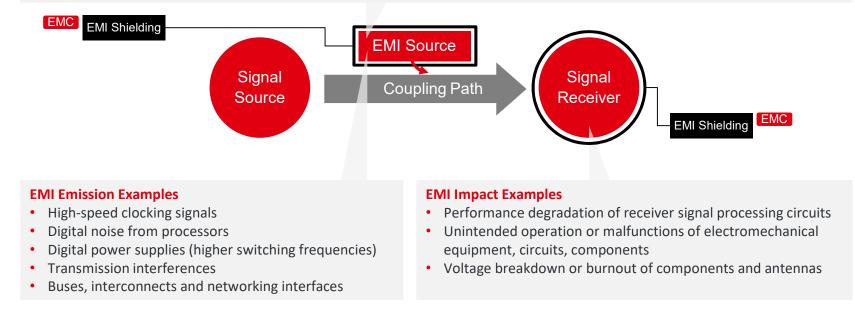
LOCTITE ABLESTIK EMI 8660S

Data Package Conformal EMI Shielding Material

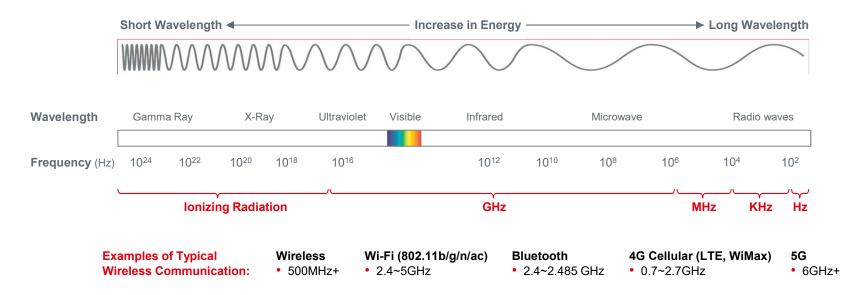
November, 2017

- EMI Shielding Introduction
- Spray Solution Value Proposition and Technology Introduction
- Application Process Flow and Parameters
- Material Physical Properties
- Material Performance
- Material Reliability
- Summary


LOCTITE ABLESTIK EMI 8660S | Data Package November 8, 2017

Electromagnetic Interference and Compatibility

Electromagnetic Interference (EMI)


- Unwanted signal (noise) emitted by electrical circuits carrying rapidly changing signals.
- Operational disruption of electronic devices when in the vicinity of an electromagnetic field caused by another device.

LOCTITE ABLESTIK EMI 8660S | Data Package November 8, 2017

Electromagnetic Spectrum is a Limited Natural Resource

- The EM spectrum is a limited natural resource that must be maintained to allow reliable radio frequency communications.
- EMC regulatory bodies regulate and enforce EMC compliance with national or international standards such as International Electrotechnical Commission (IEC), Federal Communications Commission (FCC), Verband Deutscher Electrotechniker (VDE), International Special Committee on Radio Interference (CISPR), Comité Européen de Normalisation (CEN) and more.

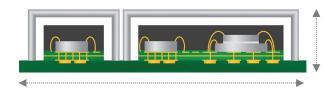
LOCTITE ABLESTIK EMI 8660S | Data Package November 8, 2017

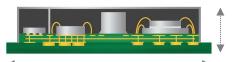
Electronics EMI Shielding Progression

Board Level Moving to Package Level

Board Level Shielding

• Conductive enclosures soldered on the board

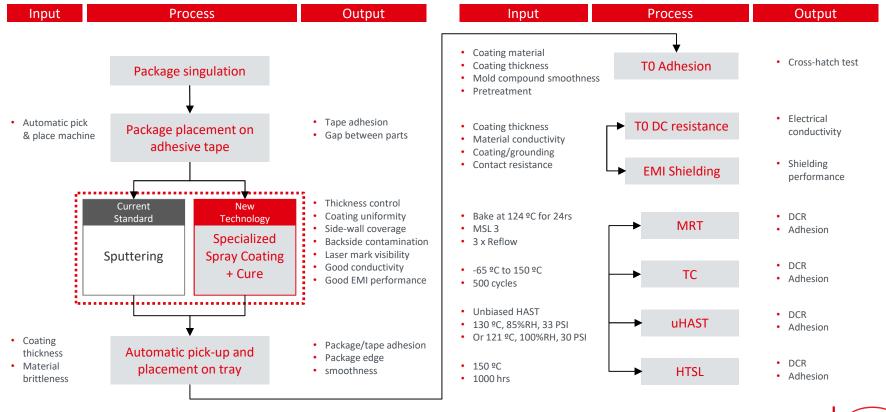

Requires large board space adding weight and thickness to the design with complex re-workability.


Package Level Shielding

• Conductive materials integrated into the package

Enables higher board density, design flexibility, simplified BOM for smaller, thinner, lighter device designs

LOCTITE ABLESTIK EMI 8660S | Data Package November 8, 2017



- EMI Shielding Introduction
- Spray Solution Value Proposition and Technology Introduction
- Application Process Flow and Parameters
- Material Physical Properties
- Material Performance
- Material Reliability
- Summary

LOCTITE ABLESTIK EMI 8660S | Data Package November 8, 2017

Package Level EMI Shielding Processing Flow

LOCTITE ABLESTIK EMI 8660S | Data Package November 8, 2017

Henkel

Specialized Spray vs. Sputtering Material + Application

Henkel Practical Solution

	Sputtering Specialized Spraying			
Capital Investment	High	Low		
Equipment Footprint	Large	Small		
Equipment Maintenance Requirement	Strict and regular	Low		
Process	Complicated, vacuum, need cooling	Simple, no vacuum, RT process		
Throughput (UPH)	Low	High		
Substrate Surface Quality Control	Tight. Requires specific surface treatment	Less sensitive to surface contamination		
Easy Scalability	Low	High		
Technology Awareness	High	New		
Top Coating Thickness Control	Good	Good		
Sidewall Coating Coverage	30~40% of top	50~60% of top		
EMI SE / Electrical Performance	Good Good			
Coating Material Selection	Restricted selection (metal, alloy)	Flexible metal and polymer selection		

Good Moderate

Poor

LOCTITE ABLESTIK EMI 8660S | Data Package November 8, 2017

Specialized Spray vs. Conventional Spray Material + Application

		Henkel Practical Solution
	Conventional Spray	Specialized Spray
Spray technology	Air spray	Ultrasonic spray
Atomization technology	Air pressure	Ultrasonic energy
Atomized droplet size	Micron	Submicron-Micron
Supported coating thickness (µm)	10 ~ >30μm	3 ~ >30μm
Sidewall coverage (vs. top)	10~50%	50~60%
Droplet uniformity	Poor	Good
Uniform thin coating (<10µm)	No	Yes
Coating uniformity	Poor	Good
Viscosity	<600cps	<600cps
Throughput (UPH)	High	High (~40 carriers per hour)
HVM availability	Commercial	Commercial
Equipment cost	Low	Low

Good Moderate

erate Poor

LOCTITE ABLESTIK EMI 8660S | Data Package November 8, 2017

Atomizing Spraying Technology

Ultrasonic Spray Atomization

Spray

Technology

Agnostic

Henkel

Material

Note

Ultrasonic

Spray

Compatible with Various Spray Technologies

- Henkel materials are compatible with all types of spray equipment.
- Atomizing spray technology provides most advantages for package level EMI shielding.

Ultrasonic Spray Coating Technology

- Ultrasonic energy atomizes material into small droplets
 - Droplet size is related to material and ultrasonic energy
 - Droplets are finer and more uniform than from conventional air spray
- Air pressure sprays and shapes the droplet configuration

Henkel can provide test data and recommendations on optimal spray technologies for various applications, however, Henkel does not directly sell or distribute spray machines.

LOCTITE ABLESTIK EMI 8660S | Data Package November 8, 2017

Ultrasonic Spray Atomization

Process, Parameters, and Advantages

Parameters

X-Y-Z motionSpray head height

Spray speed

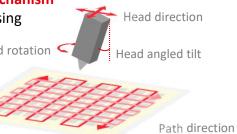
Interval + Pass

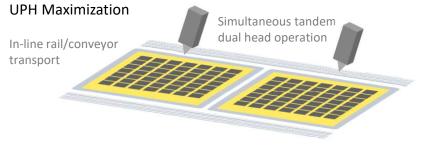
Spray head angle

• Flow rate / pressure

• Ultrasonic frequency

Key Advantages


- Tight thickness control (single μm level)
- Room temperature in air process
- Low material wastage (precision coating)
- No cooling required
- No special surface treatment required
- Adjustable parameters + angle for sidewall
- No moving parts in head for stable liquid delivery


Dual spray head system

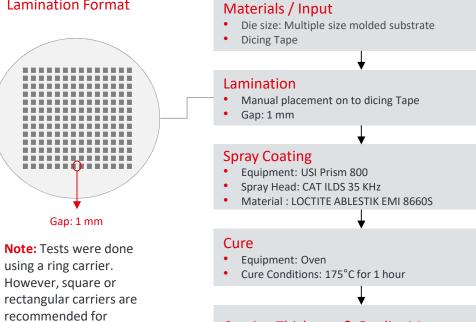
Rectangular and circular frame compatible

Prism 800 Dual Spray Head System

LOCTITE ABLESTIK EMI 8660S | Data Package November 8, 2017

- EMI Shielding Introduction
- Spray Solution Value Proposition and Technology Introduction
- Application Process Flow and Parameters
- Material Physical Properties
- Material Performance
- Material Reliability
- Summary

LOCTITE ABLESTIK EMI 8660S | Data Package November 8, 2017



Spray Processing Flow

actual production to

maximize UPH.

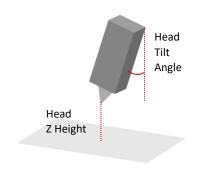
Coating Thickness & Quality Measurement

• Cross-section, SEM, visual inspection

Spray Coating Parameters

Parameter	Standard Value
Flow rate*	0/8-3 mL/min
Spray pitch	10 mm
Speed*	400 mm/sec
Air pressure	400 KPa
Z-height	40 mm
Head angle*	30 degrees
# of passes	4

LOCTITE ABLESTIK EMI 8660S | Data Package November 8, 2017


Spray Processing Key Parameters

Parameters for Full Four Sidewall Coverage

Software-Controlled Spray Parameters

Parameter Туре **Standard Value** 0.8 – 3 ml/min Flow rate Used for Variable coating 200 – 600 mm/sec Speed thickness Spray Pitch 10 mm control **Air Pressure** 400 K Pa Z-height 40 mm Constant Head angle 30° Spray Direction (# of Pass) 4

Spray Head Directions For 4 Sidewall Coverage

LOCTITE ABLESTIK EMI 8660S | Data Package November 8, 2017

Curing Parameters

Curing Equipment and Conditions			
Oven Convection oven			
Atmosphere	Air		
Oven Preheat Condition	Preheat to 175°C		
Cure Profile	1hr at 175°C in preheated oven		

LOCTITE ABLESTIK EMI 8660S | Data Package November 8, 2017

Storage and Handling

	Conditions	Time
Storage	-40°C	1 year
Work Life	25°C	24 hours
Open Time	25°C	8 hours

LOCTITE ABLESTIK EMI 8660S | Data Package November 8, 2017

- EMI Shielding Introduction
- Spray Solution Value Proposition and Technology Introduction
- Application Process Flow and Parameters
- Material Physical Properties
- Material Performance
- Material Reliability
- Summary

LOCTITE ABLESTIK EMI 8660S | Data Package November 8, 2017

Material Properties LOCTITE ABLESTIK EMI 8660S

Physical Pro	Key Features	
Material Name - Commercial	LOCTITE ABLESTIK EMI 8660S	 Designed for spray coating
Technology	Electrically Conductive	High bulk conductivity
Application Method	Spray	 Flexible coating thickness
Filler Type	Proprietary Ag filler	
Volume Resistivity (Ω·cm)	1.5 x10 ⁻⁵	 Excellent adhesion on untreate epoxy mold compound surface
Coating Thickness Range (μm)	3~10	other materials)
Rec. Dried Coating Thickness (µm)	4±1	Thermal cured material
Viscosity, 5rpm (cps)	250	
Thixotropic Index	1.3	
Curing Condition	175ºC, 1 hour, in air	
Permeability	1	
Shielding Effectiveness (dB)	90	
Adhesion on EMC (Cross hatch) ASTM	5B	
Compatible Surface	MC	

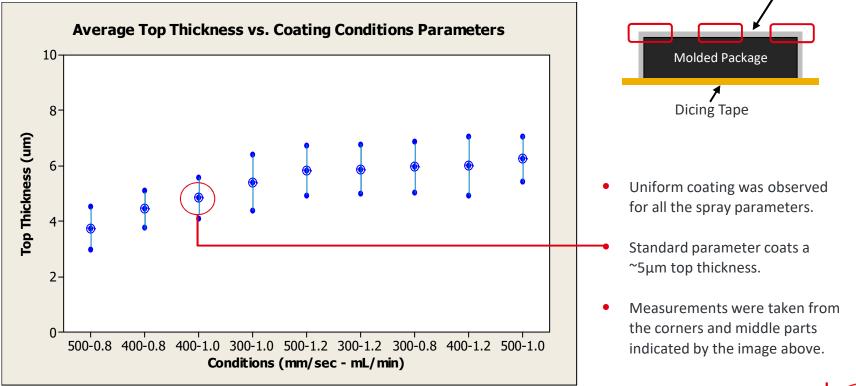
LOCTITE ABLESTIK EMI 8660S | Data Package November 8, 2017

- EMI Shielding Introduction
- Spray Solution Value Proposition and Technology Introduction
- Application Process Flow and Parameters
- Material Physical Properties
- Material Performance
- Material Reliability
- Summary

LOCTITE ABLESTIK EMI 8660S | Data Package November 8, 2017

Spray Coating Performance Spray Coating Process DOE

Objective: To evaluate how different parameters within the machine effects material thickness after cure.

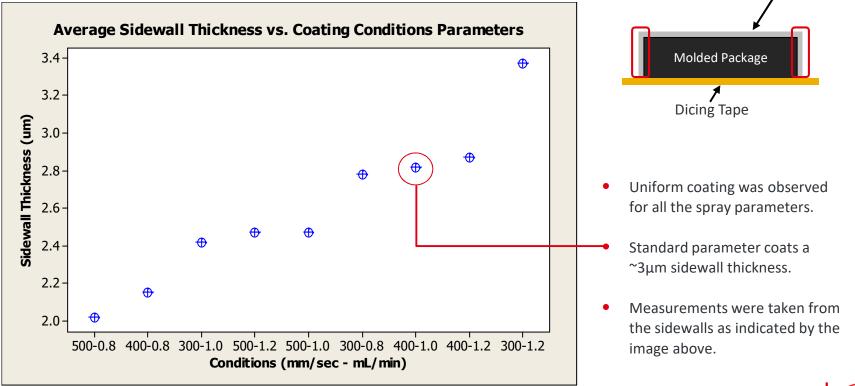

Leg	Flow Rate (mL/min)	Spray Speed (mm/sec)		
1	0.8 mL/min	300 mm/sec		
2	1 mL/min	300 mm/sec		
3	1.2 mL/min	300 mm/sec		
4	0.8 mL/min	400 mm/sec		
5	1 mL/min	400 mm/sec		
6	1.2 mL/min	400 mm/sec		
7	0.8 mL/min	500 mm/sec		
8	1 mL/min	500 mm/sec		
9	1.2 mL/min	500 mm/sec		

LOCTITE ABLESTIK EMI 8660S | Data Package November 8, 2017

Spray Coating Performance

Average Top Thickness vs. Coating Parameters

LOCTITE ABLESTIK EMI 8660S | Data Package November 8, 2017



21

Spray Coating

Spray Coating Performance

Average Sidewall Thickness vs. Coating Parameters

LOCTITE ABLESTIK EMI 8660S | Data Package November 8, 2017

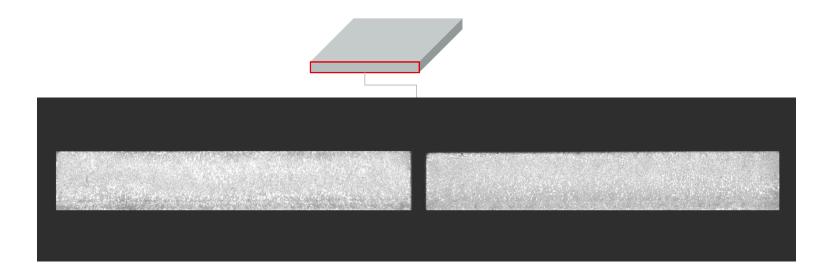
22

Spray Coating

Spray Coating Quality

Recommended Spray Parameters for Different Thicknesses

Spray Para	meters	Thicknes	ss Results
Spray Speed	Flow rate	Top thickness	Side thickness
500	0.8	4.0 μm	2.0 μm
400	0.8	4.5 μm	2.0 µm
400	1.0	5.0 μm	3.0 µm
300	1.0	5.5 μm	3.0 µm
300	1.2	6.0 μm	3.5 µm
		1	

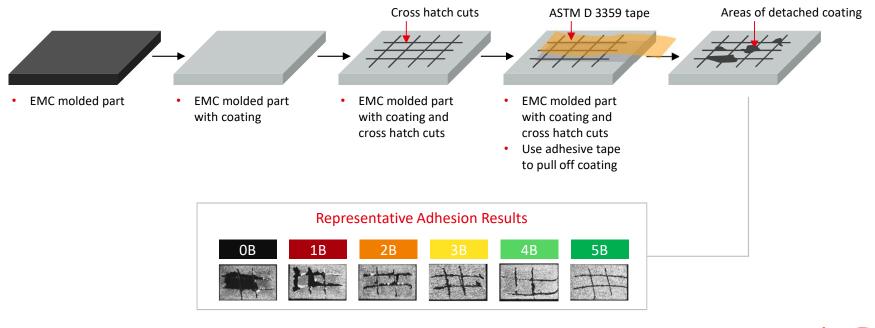

• Uniform coating and thickness on both top and side walls.

LOCTITE ABLESTIK EMI 8660S | Data Package November 8, 2017 23

Spray Coating Performance

Package Sidewall Coverage

• All coated packages shows good coverage on all sides.


LOCTITE ABLESTIK EMI 8660S | Data Package November 8, 2017 24

Adhesion Performance

Adhesion Testing Process Flow

Cross Hatch Test

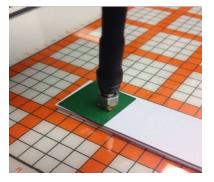
LOCTITE ABLESTIK EMI 8660S | Data Package November 8, 2017

Adhesion Performance

Initial Adhesion vs. Coating Parameters

• All of the tested coating conditions provided 5B adhesion results.


LOCTITE ABLESTIK EMI 8660S | Data Package November 8, 2017



Material Performance

Shielding Effectiveness

Test Method

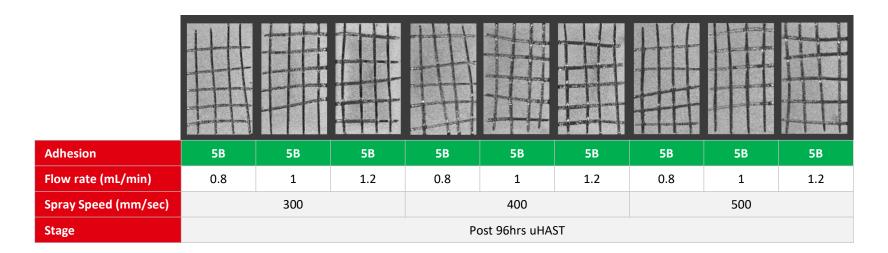
 Uses 1GHz and 5GHz antennae and a real-time EM scanner (designed for EMI pre-compliance and diagnostics).

Test Results

Method	Coating Speed (mm/sec)	Flow rate (mL/min)	Top thickness	Side thickness	EMI Shielding Effectiveness at 5GHz	EMI Shielding Effectiveness at 1GHz
	400	0.8	4.5 μm	2.0 µm	40.3	31.3
Sprayed	400	1.0	5.0 µm	3.0 µm	45.6	35.9
	300	1.0	5.5 µm	3.0 µm	43.8	33.3
Sputtered	N/A	N/A	3.0 µm	1.0 µm	40.1	30.4

• Optimized spray coating parameters give equal or better EMI shielding performance when compared with sputtered parts.

LOCTITE ABLESTIK EMI 8660S | Data Package November 8, 2017


- EMI Shielding Introduction
- Spray Solution Value Proposition and Technology Introduction
- Application Process Flow and Parameters
- Material Physical Properties
- Material Performance
- Material Reliability
- Summary

LOCTITE ABLESTIK EMI 8660S | Data Package November 8, 2017

Material Reliability

Adhesion Post Reliability – MSL3 + 96hrs uHAST

• All of the tested coating conditions passed adhesion at 5B after MSL3 + 96hours uHAST.

LOCTITE ABLESTIK EMI 8660S | Data Package November 8, 2017

Material Reliability

Adhesion Post Reliability Test – MSL3 + HTS testing (150°C)

Adhesion	5B	5B	5B	5B	5B
Flow rate (mL/min)	1.0	1.0	1.0	1.0	1.0
Spray Speed (mm/sec)	400	400	400	400	400
Stage	Initial	250 hours	500 hours	750 hours	1000 hours

• All of the tested coating conditions passed adhesion at 5B after MSL3 + 1000hrs HTS.

LOCTITE ABLESTIK EMI 8660S | Data Package November 8, 2017

Material Reliability

Adhesion Post Reliability Test – MSL3 + TCT (-55°C to 125°C)

Adhesion	5B	5B	5B	5B	5B
Flow rate (mL/min)	1.0	1.0	1.0	1.0	1.0
Spray Speed (mm/sec)	400	400	400	400	400
Stage	Initial	250 cycles	500 cycles	750 cycles	1000 cycles

• All of the tested coating conditions passed adhesion at 5B after MSL3 + 1000 cycles TCT.

LOCTITE ABLESTIK EMI 8660S | Data Package November 8, 2017

- EMI Shielding Introduction
- Spray Solution Value Proposition and Technology Introduction
- Application Process Flow and Parameters
- Material Physical Properties
- Material Performance
- Material Reliability
- Summary

LOCTITE ABLESTIK EMI 8660S | Data Package November 8, 2017

Summary

Coating Capability

- LOCTITE ABLESTIK EMI 8660S achieves uniform top and sidewall coating for all the spray parameters tested
 - Spray speed and flow rate have significant effect on coating thickness and are the key parameters to adjust the coating thickness
 - o 4-8 μm uniform coating can be achieved by adjusting flow rate and spray speed

Adhesion and EMI Shielding Performance

- All the LOCTITE ABLESTIK EMI 8660S parts tested show good adhesion and reliability performance
- LOCTITE ABLESTIK EMI 8660S shows equal or better EMI performance than sputtering at both 1GHz and 5GHz

LOCTITE ABLESTIK EMI 8660S | Data Package November 8, 2017

