• x

LOCTITE 3703

Harmonization Code : 3907.30.00.90 |   Polyacetals, other polyethers and epoxide resins, in primary forms; polycarbonates, alkyd resins, polyallyl esters and other polyesters, in primary forms : Epoxide resins : Other
Main features
  • UV & Visible light Cure
  • High speed curing
  • Excellent adhesion

Product Description

LOCTITE® 3703 is an acrylic adhesive paste, primarily designed for bonding rigid and flexible PVC to polycarbonate where large gap filling capabilities (0.25mm) and a flexible joint are desired. Its flexibility enhances the load bearing and shock absorbing characteristics of the bond area. The product has shown excellent adhesion to a wide variety of substrates including glass, many plastics and most metals. The thixotropic nature of LOCTITE® 3703 reduces the migration of liquid product after application to the substrate and is ideal for optical applications.

LOCTITE® 3703 is an acrylated urethane white/translucent paste that can be cured by exposure to UV and/or visible light of sufficient intensity. Surface cure is enhanced by exposure to UV light in the 220 to 260 nm range. Cure rate and ultimate depth of cure depend on light intensity, spectral distribution of the light source, exposure time and light transmittance of the substrate through which the light must pass.

Product Family
3703  
10cc Syringe

Catalog Product

Unlike other products we offer, the products listed on this page cannot currently be ordered directly from the website.
Not Available Shipping in 8 - 12 weeks

Technical Specifications

General Properties
Specific Gravity
Specific Gravity
Specific gravity (SG) is the ratio of the density of a substance to the density of a reference substance; equivalently, it is the ratio of the mass of a substance to the mass of a reference substance for the same given volume.

For liquids, the reference substance is almost always water (1), while for gases, it is air (1.18) at room temperature. Specific gravity is unitless.
1.12
Mechanical Properties
Elongation
Elongation
Elongation is the process of lengthening something.

It is a percentage that measures the initial, unstressed, length compared to the length of the material right before it breaks.

It is commonly referred to as Ultimate Elongation or Tensile Elongation at break.
85 %
Viscosity
Viscosity
Viscosity is a measurement of a fluid’s resistance to flow.

Viscosity is commonly measured in centiPoise (cP). One cP is defined as
the viscosity of water and all other viscosities are derived from this base. MPa is another common unit with a 1:1 conversion to cP.

A product like honey would have a much higher viscosity -around 10,000 cPs-
compared to water. As a result, honey would flow much slower out of a tipped glass than
water would.

The viscosity of a material can be decreased with an increase in temperature in
order to better suit an application
Viscosity 20,000 mPa.s
Tensile Strength
Tensile Strength
The tensile strength of a material is the maximum amount of tensile stress that it can withstand while being stretched or pulled before failure.

Some materials break very sharply, without plastic deformation, in what is called a brittle failure. Others, which are more ductile, including most metals, experience some plastic deformation and possibly necking before fracture.
Tensile Strength
Tensile Strength
Tensile strength determines the resistance of a material to break under tension and it measures how much elongating load (or tensile stress) it can handle before fracture.

To make it simple, it measures how much force we have to apply when pulling apart a material before it breaks.
13 MPa
Tensile Modulus
Tensile Modulus
Tensile modulus is a mechanical property that measures the stiffness of an elastic material. It is the slope of stress / strain curve of a material under direct tensile loading.

It can be used to predict the elongation or elastic deformation of an object as long as the stress is less than the tensile strength of the material. Elastic deformation is caused by stretching the bonds between atoms and the deformation can be reversed when the load is removed.

Tensile modulus is affected by temperature and is an important engineering attribute since we generally want to keep elastic deformation as small as possible.
Tensile Modulus @25°C 490 N/mm2