LOCTITE AA 3106

Harmonization Code : 3506.10.00.00 |   Prepared glues and other prepared adhesives, not elsewhere specified or included; products suitable for use as glues or adhesives, put up for retail sale as glues or adhesives, not exceeding a net weight of 1 kg
Main features
  • Transparent liquid
  • UV & Visible light cure
  • Enhances shock absorption

Product Description

LOCTITE® AA 3106 is a transparent acrylic liquid, primarily designed for bonding rigid or flexible PVC to polycarbonate where large gap filling capabilities and flexible joints are desired. The product has shown excellent adhesion to a wide variety of substrates including glass, many plastics and most metals. The thixotropic nature of LOCTITE® AA 3106TM reduces the migration of liquid product after application to the substrate.

LOCTITE® AA 3106 can be cured by exposure to UV and/or visible light of sufficient intensity. To obtain full cure on surfaces exposed to air, radiation @ 220 to 260 nm is also required. The speed of cure will depend upon the UV intensity and spectral distribution of the light source, the exposure time and the light transmittance of the substrates.

Product Family
AA3106  
25cc Syringe

Catalog Product

Unlike other products we offer, the products listed on this page cannot currently be ordered directly from the website.

Technical Specifications

General Properties
Refractive index
Refractive index
The refractive index determines how much the path of light is bent, or refracted, when entering a material. It is calculated by taking into account the velocity of light in vacuum compared to the velocity of light in the material.

The refractive index calculation can be affected by the wavelength of light and the temperature of the material. Even though it is usually reported on standard wavelengths it is advised to check the TDS for the precise test parameters.
1.48
Specific Gravity
Specific Gravity
Specific gravity (SG) is the ratio of the density of a substance to the density of a reference substance; equivalently, it is the ratio of the mass of a substance to the mass of a reference substance for the same given volume.

For liquids, the reference substance is almost always water (1), while for gases, it is air (1.18) at room temperature. Specific gravity is unitless.
1.08
Physical Properties
Viscosity
Viscosity
Viscosity is a measurement of a fluid’s resistance to flow.

Viscosity is commonly measured in centiPoise (cP). One cP is defined as
the viscosity of water and all other viscosities are derived from this base. MPa is another common unit with a 1:1 conversion to cP.

A product like honey would have a much higher viscosity -around 10,000 cPs-
compared to water. As a result, honey would flow much slower out of a tipped glass than
water would.

The viscosity of a material can be decreased with an increase in temperature in
order to better suit an application
5,000 mPa.s
Electrical Properties
Dielectric Constant
Dielectric Constant
Dielectric Constant (k), commonly known as relative permittivity, is a number relating the ability of a material to carry alternating current to the ability of vacuum to carry alternating current.

It determines the ability of an insulator to store electrical energy and is the ratio of electric permeability in vacuum against the electric permeability of a material.

The lower the dielectric constant (κ) and dissipation factor, the less energy is absorbed from an electric field, making it a much better insulator.

It is a dimensionless property that can be affected by various factors such as the
thickness uniformity of a material, insufficient contact between the sample and electrodes, water adsorption and contact resistance.
Dielectric Constant @ 23 ˚C/1 kHz 5.01
Volume Resistivity
Volume Resistivity
Volume resistivity, also called volume resistance, bulk resistance or bulk resistivity is a thickness dependent measurement of the resistivity of a material perpendicular to the plane of the surface.
7.7x1014 Ohms⋅cm
Mechanical Properties
Hardness
Hardness
Hardness is a dimensionless quantity. There is no direct relationship between measurements in one scale and their equivalent in another scale or another hardness test.
Durometer (Shore D) 53
Elongation
Elongation
Elongation is the process of lengthening something.

It is a percentage that measures the initial, unstressed, length compared to the length of the material right before it breaks.

It is commonly referred to as Ultimate Elongation or Tensile Elongation at break.
250 %
Tensile Modulus
Tensile Modulus
Tensile modulus is a mechanical property that measures the stiffness of an elastic material. It is the slope of stress / strain curve of a material under direct tensile loading.

It can be used to predict the elongation or elastic deformation of an object as long as the stress is less than the tensile strength of the material. Elastic deformation is caused by stretching the bonds between atoms and the deformation can be reversed when the load is removed.

Tensile modulus is affected by temperature and is an important engineering attribute since we generally want to keep elastic deformation as small as possible.
Tensile Modulus @25°C 250 N/mm2
Tensile Strength
Tensile Strength
The tensile strength of a material is the maximum amount of tensile stress that it can withstand while being stretched or pulled before failure.

Some materials break very sharply, without plastic deformation, in what is called a brittle failure. Others, which are more ductile, including most metals, experience some plastic deformation and possibly necking before fracture.
Tensile Strength
Tensile Strength
Tensile strength determines the resistance of a material to break under tension and it measures how much elongating load (or tensile stress) it can handle before fracture.

To make it simple, it measures how much force we have to apply when pulling apart a material before it breaks.
18.6 MPa

Additional Information

LOCTITE® AA 3106™ can be cured by exposure to UV and/or visible light of sufficient intensity. To obtain full cure on surfaces exposed to air, radiation @ 220 to 260 nm is also required. The speed of cure will depend upon the UV intensity and spectral distribution of the light source, the exposure time and the light transmittance of the substrates.