• x

LOCTITE ECCOBOND 7010C DAM

Harmonization Code : 3907.30.00.90 |   Polyacetals, other polyethers and epoxide resins, in primary forms; polycarbonates, alkyd resins, polyallyl esters and other polyesters, in primary forms : Epoxide resins : Other
Main features
  • Dam
  • Low CTE
  • High purity

Product Description

LOCTITE ECCOBOND DAM 7010C is a black epoxy semiconductor encapsulant, formulated to be used in combination with a "fill" encapsulant LOCTITE ECCOBOND FIL 7010C as a dam encapsulant. It is specially designed for glob top, chip on board applications where protection of wire bonded bare IC is required. This two material combination is also suited for the protection of multiple chips and for encapsulating components where a well-defined glob height and flat surface are required.

LOCTITE ECCOBOND DAM 7010C has good crack, chemical and thermal resistance along with low thermal expansion. This SVHC free, high purity, low sag material operates at -40 to 150ºC and is typically used for glob top applications and the encapsulation of bare wire bonded semiconductors.

Product Family
DAM7010C  
30cc Syringe 20oz Cartridge

Catalog Product

Unlike other products we offer, the products listed on this page cannot currently be ordered directly from the website.
Not Available Shipping in 8 - 12 weeks

Technical Specifications

General Properties
Shelf Life
Shelf Life
Shelf life is the amount of time after manufacturing that a product is guaranteed to retain its properties.

It differs vastly per product and it is based on temperature and storage conditions.

The properties can be guaranteed for the temperature and time range indicated on the TDS since those are the ones tested to be the best for the product.
Shelf Life @ -40°C 180 days
Chemical Properties
Extractable Ionic Content, after 20 hours
Chloride (Cl-)
Chloride (Cl-)
The amount of Chloride (Cl-) ion extracted from the product in parts per million (ppm)
10 ppm
Sodium (Na+)
Sodium (Na+)
The amount of Sodium (Na+) ion extracted from the product in parts per million (ppm)
10 ppm
Potassium (K+)
Potassium (K+)
The amount of Potassium (K+) ion extracted from the product in parts per million (ppm)
10 ppm
Mechanical Properties
Viscosity
Viscosity
Viscosity is a measurement of a fluid’s resistance to flow.

Viscosity is commonly measured in centiPoise (cP). One cP is defined as
the viscosity of water and all other viscosities are derived from this base. MPa is another common unit with a 1:1 conversion to cP.

A product like honey would have a much higher viscosity -around 10,000 cPs-
compared to water. As a result, honey would flow much slower out of a tipped glass than
water would.

The viscosity of a material can be decreased with an increase in temperature in
order to better suit an application
Viscosity 90,000 mPa.s
Thixotropic index
Thixotropic index
Thixotropic Index is a ratio of a material s viscosity at two different speeds in Ambient temperature, generally different by a factor of ten.

A thixotropic material s viscosity will decrease as agitation or pressure is increased. It indicates the capability of a material to hold its shape. Mayonnaise is a great example of this. It holds its shape very well, but when a shear stress is applied, the material easily spreads.

It helps in choosing a material in accordance to the application, dispense method and viscosity of a material.
3
Hardness
Hardness
Hardness is a dimensionless quantity. There is no direct relationship between measurements in one scale and their equivalent in another scale or another hardness test.
Durometer (Shore D) 90
Electrical Properties
Volume Resistivity
Volume Resistivity
Volume resistivity, also called volume resistance, bulk resistance or bulk resistivity is a thickness dependent measurement of the resistivity of a material perpendicular to the plane of the surface.
9.0x10-15 Ohms⋅cm
Thermal Properties
Glass Transition Temperature (Tg)
Glass Transition Temperature (Tg)
The glass transition temperature for organic adhesives is a temperature region where the polymers change from glassy and brittle to soft and rubbery. Increasing the temperature further continues the softening process as the viscosity drops too. Temperatures between the glass transition temperature and below the decomposition point of the adhesive are the best region for bonding.

The glass-transition temperature Tg of a material characterizes the range of temperatures over which this glass transition occurs.
135 °C
Thermal Conductivity
Thermal Conductivity
Thermal conductivity describes the ability of a material to conduct heat. It is required by power packages in order to dissipate heat and maintain stable electrical performance.

Thermal conductivity units are [W/(m K)] in the SI system and [Btu/(hr ft °F)] in the Imperial system.
0.78 W/m.K
Coefficient of Thermal Expansion (CTE)
Coefficient of Thermal Expansion (CTE)
CTE (Coefficient of thermal expansion) is a material property that is indicative of the extent to which a material expands with a change in temperature. This can be a change in length, area or volume, depending on the material.

Knowing the CTE of the layers is helpful in analyzing stresses that might occur when a
system consists of an adhesive plus some other solid component.
Coefficient of Thermal Expansion (CTE), α1
Coefficient of Thermal Expansion (CTE), α1
CTE α1 (alpha 1) is the slope of the Coefficient of thermal expansion in a temperature range below the Glass transition temperature (Tg).

It explains how much a material will expand until it reaches Tg.
16 ppm/°C
Coefficient of Thermal Expansion (CTE), α2
Coefficient of Thermal Expansion (CTE), α2
CTE α2 (alpha 2) is the slope of the Coefficient of thermal expansion in a temperature range above the Glass transition temperature (Tg).

It explains the extent to which a material will expand after it passes Tg.
62 ppm/°C