ABchimie836UV Soft Dual Cure Conformal Coating

Harmonization Code : 3208.20.90 |   Paints and varnishes that are dispersed or dissolved in a non aqueous medium
Main features
  • One Component
  • Dual Cure (UV and Humidity)
  • Excellent Moisture Resistance

Product Description

ABChimie® 836UV is a transparent urethane acrylate conformal coating designed to provide mechanical and environmental protection to electronic components and assemblies. It features dual-cure technology (UV and humidity), which allows for the complete crosslinking through the entire PCB, even in areas that may be covered by shadow. The coating also allows the PCB to be soldered through without producing toxic gases.

ABChimie 836UV exhibits excellent moisture resistance in humid environments (Log Ohm> 10.5, IPC CC 830, SIR per IPC TM 650 2.6.3.4), which makes it ideal for conformal coating applications. The ideal application method is selective coating.  One of its advantages is that it cures rapidly under UV light, has zero VOCs, and can be applied to high-speed manufacturing processes to increase productivity. ABChimmie 836UV is in full compliance with REACH and RoHS regulations, and also has UL94 V0 and UL746E (QMJU2-E308681) certifications.

Product Key Features

  • Transparent 
  • Dual Cure (UV + Humidity)
  • Thin film thickness (30 - 130 microns)
  • Excellent adhesion to PCBs 
  • Resists mold growtn
  • Fast UV cure for high volume production
  • Solvent-free formulation (no VOCs)
  • Spray and Selective Coating (ideal) applications 
  • UL94 V0 and UL746e

    Applications
  • Conformal coating for Printed circuit assemblies. 
  • Protection for plastic casings or covers
Product Family
ABC-836UV  

Catalog Product

Unlike other products we offer, the products listed on this page cannot currently be ordered directly from the website.

Technical Specifications

General Properties
Appearance
Appearance
Appearance at room temperature.
Transparent liquid
Film Thickness
Film Thickness
Film thickness is the thickness of a backing film without taking into account any coatings or adhesive layers. It is measured in micron and the conversion factor to mil is 0.039.
30 - 130 µm
Electrical Properties
Breakdown Voltage
Breakdown Voltage
Breakdown voltage is the minimum voltage necessary to force an insulator to conduct some amount of electricity.
It is the point at which a material ceases to be an insulator and becomes a resistor that  conducts electricity at some proportion of the total current. 

After dielectric breakdown, the material may or may not behave as an insulator any more because of the molecular structure alteration. The current flow tend to create a localised puncture that totally alters the dielectric properties of the material.

This electrical property is thickness dependent and is the maximum amount of voltage that a dielectric material can withstand before breaking down. The breakdown voltage is calculated by multiplying the dielectric strength of the material times the thickness of the film.
1500 V
Thermal Properties
Coefficient of Thermal Expansion (CTE), α1
Coefficient of Thermal Expansion (CTE), α1
CTE α1 (alpha 1) is the slope of the Coefficient of thermal expansion in a temperature range below the Glass transition temperature (Tg).

It explains how much a material will expand until it reaches Tg.
66 ppm/°C
Coefficient of Thermal Expansion (CTE), α2
Coefficient of Thermal Expansion (CTE), α2
CTE α2 (alpha 2) is the slope of the Coefficient of thermal expansion in a temperature range above the Glass transition temperature (Tg).

It explains the extent to which a material will expand after it passes Tg.
193 ppm/°C
Glass Transition Temperature (Tg)
Glass Transition Temperature (Tg)
The glass transition temperature for organic adhesives is a temperature region where the polymers change from glassy and brittle to soft and rubbery. Increasing the temperature further continues the softening process as the viscosity drops too. Temperatures between the glass transition temperature and below the decomposition point of the adhesive are the best region for bonding.

The glass-transition temperature Tg of a material characterizes the range of temperatures over which this glass transition occurs.
35 °C
Operating Temperature -50 - +150 °C
UL 94 Rating
UL 94 Rating
Flammability rating classification.
It determines how fast a material burns or extinguishes once it is ignited.

HB: slow burning on a horizontal specimen; burning rate less than 76 mm/min for thickness less than 3 mm or burning stops before 100 mm
V-2: burning stops within 30 seconds on a vertical specimen; drips of flaming particles are allowed.
V-1: burning stops within 30 seconds on a vertical specimen; drips of particles allowed as long as they are not inflamed.
V-0: burning stops within 10 seconds on a vertical specimen; drips of particles allowed as long as they are not inflamed.
5VB: burning stops within 60 seconds on a vertical specimen; no drips allowed; plaque specimens may develop a hole.
5VA: burning stops within 60 seconds on a vertical specimen; no drips allowed; plaque specimens may not develop a hole
V-0
Physical Properties
Viscosity
Viscosity
Viscosity is a measurement of a fluid’s resistance to flow.

Viscosity is commonly measured in centiPoise (cP). One cP is defined as
the viscosity of water and all other viscosities are derived from this base. MPa is another common unit with a 1:1 conversion to cP.

A product like honey would have a much higher viscosity -around 10,000 cPs-
compared to water. As a result, honey would flow much slower out of a tipped glass than
water would.

The viscosity of a material can be decreased with an increase in temperature in
order to better suit an application
52.5 mPa.s

Additional Information

Frequently Asked Questions About ABChimie® 836 UV

What are typical applications for ABChimie® 836 UV?


ABChimie® 836 UV is a UV-curable conformal coating designed to protect printed circuit board assemblies (PCBs) and components in demanding manufacturing environments, including:

  • Automotive electronics (e.g., control units, sensors)
  • Industrial automation (e.g., motor drives, PLCs)
  • Consumer electronics (e.g., smart devices, wearables)
  • Other high-reliability electronic assemblies

Why choose ABChimie® 836 UV?

ABChimie® 836 UV delivers rapid UV curing, excellent electrical insulation, optical transparency, and strong adhesion to flexible substrates. It supports high-throughput manufacturing while providing durable protection for sensitive components.

What is the shelf life of ABChimie® 836 UV?

ABChimie® 836 UV has a shelf life of 12 months when stored at 5–30°C in tightly sealed containers. Prior to use, allow the product to equilibrate for 24 hours at 18–32°C for optimal performance.

What happens after the shelf life?

Using ABChimie® 836 past its shelf life may alter viscosity, affecting uniformity and application performance. Always use an in-date product for reliable results.

What is the recommended curing method for ABChimie® 836 UV?

ABChimie® 836 UV  is UV-curable and should be cured with a mercury lamp. The minimum UVA dose is 1000 mJ/cm² for a 100 μm thickness. The mercury lamp-curable version is ABChimie® 836 UV. Higher UVA doses do not negatively affect final properties.

What is the recommended thickness for ABChimie® 836 UV?

ABChimie® 836 UV coating thickness depends on the application method.

Recommended thickness 30 – 130 microns
Spraying 30-90 microns 
Selective coating machine (film coater) 90-130 microns (380mm/s)

Should I control the application environment?

ABChimie® 836 UV should be applied at a minimum temperature of 16°C and a minimum relative humidity of 50% are recommended for coating application. The relative humidity of at least 50% is recommended for the second  ABchimie TDS ABchimie836UV and UV LED polymerization mechanism. Before applying, the printed circuit board must be clean, dry, and free of moisture. A stage in an oven at 80 °C for 4 hours is usually sufficient.

Can I adjust the viscosity?

ABChimie® 836 UV can be customized for variable viscosities. Contact our team for guidance.

 




Learn More About ABChimie® 836 UV


ABChimie® 836 UV is a proven solution for engineers seeking fast, reliable protection of electronic assemblies in demanding manufacturing environments. This UV-curable conformal coating delivers rapid curing, excellent electrical insulation, and strong environmental resistance—ideal for applications in automotive electronics, industrial automation, consumer electronics, and other high-reliability assemblies.


Main Advantages of ABChimie 836 UV

dual cure technology

ABchimie® 836 UV cures through a dual mechanism: UV exposure initiates rapid surface curing, while moisture ensures complete curing throughout the coating. This combination provides a uniform, durable protective layer with optimal adhesion and performance.

MECHANICAL PROTECTION

ABChimie® 836 UV  provides excellent mechanical protection. This hardness helps resist scratches, abrasion, and minor impacts, ensuring long-term stability of encapsulated components.

ability to solder

ABchimie® 836 UV can be soldered through without generating highly toxic gases, ensuring safe processing. The coating maintains its integrity during soldering, allowing reliable connections while protecting the underlying components.

 

excellent adhesion in harsh environments

ABchimie® 836UV provides excellent adhesion even in harsh environments. The coating forms a durable, long-lasting protective layer that resists moisture, chemicals, and temperature variations, ensuring reliable performance under demanding conditions.


How to Choose a Conformal Coating

Selecting the most suitable resin requires consideration of key factors:

  • ✔ Norms & Compliance
  • ✔ Environment / Exposure Conditions
  • ✔ Repairability
  • ✔ Electrical Performance
  • ✔ Application Method
  • ✔ Operating Temperature

Compliance You Can Trust ✅

ABChimie® 836 UV meets stringent industry standards, ensuring reliability and regulatory adherence for OEMs and contract manufacturers:

  • REACH Compliant
  • RoHS 2011/65/EU Compliant
    UL94 V0
    UL746E (QMJU2-E308681)

Curing Tip: ABChimie 836 UV cures with UV rays. It is crucial to use the appropriate equipment, as well as the recommended settings, to achieve the best properties of the resin.

Ref. Leistung / ref power ln % over wavelength in nm


Key Curing Properties

Lamp Type
Mercury (arc lamp)
Emission Spectrum of Mercury Lamp
200-400 nm IR up to 800 nm
Minimum UVA Dose
3000 mJ/cm2
Coating Thickness
100 μm 
Distance UV lamp - PCB
1 - 10 cm
Minimum UVA Power
150 mW/cm2

Typical property values shown for reference only and should not be used as specifications.

Application tips

How to Optimise for the Best Results

 
pcb preparation

PCBs must be completely dry and thoroughly clean, with no dust, grease, wax, or other contaminants. Coating adhesion depends directly on the quality of the substrate. All flux residues must be fully removed, as they can become corrosive and lead to circuit malfunctions.

How to clean the pcb

For cleaning equipment or removing uncured ABchimie836UV or UV LED varnish, we recommend using SND or ABclean solvent.

uv recommendation

It is essential to use the correct UV equipment (UV or LED) and follow the recommended settings to achieve the optimal properties of the cured conformal coating. These parameters influence both the coating’s reactivity and surface quality. ABchimie836UV and UV LED cure through UV exposure, with moisture contributing to a secondary curing mechanism.


Curing Mechanism: UV light creates the first cure, and after 7 days the moisture from the environment completes the curing process.

double-curing mechanism

How does Moisture Cure Work?

During UV curing, exposure to UV light activates the photoinitiators in the conformal coating, triggering rapid polymerization of the resin. This results in an immediate surface cure and fast development of handling strength. UV curing provides precise, on-demand curing in exposed areas, enabling high-throughput processing while maintaining coating uniformity.

ABchimie836UV and ABchimie836UV LED use the same dual curing mechanism to ensure complete curing, including in shadowed or hard-to-reach areas. Initial curing is achieved by UV exposure, while a secondary moisture-activated cure completes the process at ambient temperature. For full curing in shaded areas, a minimum relative humidity of 50% is required for at least 7 days.

Alternative to Mercury Lamp Curing of ABChimie 836 UV

ABChimie 836 UV is also available in the LED lamp version, which cures with an LED lamp.

ABChimie 836 UV LED [Go to 836 UV LED Product Page↗]

  • Conformal Coating
  • Fluorescent under UV light
  • Excellent adhesion to flexible substrates
  • Dual curing with UV LED exposure and moisture curing

Best suited for: High-speed process looking to use LED light for curing