LOCTITE ABLESTIK 84-1LMIT

Harmonization Code : 3506.91.90.99 |   Prepared glues and other prepared adhesives, not elsewhere specified or included; products suitable for use as glues or adhesives, put up for retail sale as glues or adhesives, not exceeding a net weight of 1 kg ; Adhesives based on polymers of headings 3901 to 3913 or on rubber; Other ; Other
Main features
  • Electrically conductive
  • High thermal conductivity
  • MIL 5011 - NASA

Product Description

LOCTITE ABLESTIK 84-1LMIT epoxy adhesive is designed for medium die attach applications. This adhesive is ideal for application by syringe dispensing or screen printing. The T in the product name stands for Thermal since it has 2 times higher thermal conductivity (± 4W/mK) than the standard LMI version.

LOCTITE ABLESTIK 84-1LMIT meets the military requirements of MIL-STD883C, Method 5011 and also passes NASA outgassing requirements. It is an electrically and thermally conductive, solvent free adhesive with high purity and low outgassing.

Cure Schedule

  • 1 hour @ 150°C 
Product Family
84-1LMIT  
3CC Syringe 10CC Syringe

Catalog Product

Unlike other products we offer, the products listed on this page cannot currently be ordered directly from the website.
Shipping in 8 - 12 weeks Shipping in 8 - 12 weeks Shipping in 8 - 12 weeks

Technical Specifications

Chemical Properties
Ionic Content
Chloride (Cl-)
Chloride (Cl-)
The amount of Chloride (Cl-) ion extracted from the product in parts per million (ppm)
30 ppm
Potassium (K+)
Potassium (K+)
The amount of Potassium (K+) ion extracted from the product in parts per million (ppm)
2 ppm
Sodium (Na+)
Sodium (Na+)
The amount of Sodium (Na+) ion extracted from the product in parts per million (ppm)
10 ppm
Electrical Properties
Volume Resistivity
Volume Resistivity
Volume resistivity, also called volume resistance, bulk resistance or bulk resistivity is a thickness dependent measurement of the resistivity of a material perpendicular to the plane of the surface.
7.0x10-5 Ohms⋅cm
Thermal Properties
Coefficient of Thermal Expansion (CTE)
Coefficient of Thermal Expansion (CTE)
CTE (Coefficient of thermal expansion) is a material property that is indicative of the extent to which a material expands with a change in temperature. This can be a change in length, area or volume, depending on the material.

Knowing the CTE of the layers is helpful in analyzing stresses that might occur when a
system consists of an adhesive plus some other solid component.
Coefficient of Thermal Expansion (CTE) , α1
Coefficient of Thermal Expansion (CTE) , α1
CTE α1 (alpha 1) is the slope of the Coefficient of thermal expansion in a temperature range below the Glass transition temperature (Tg).

It explains how much a material will expand until it reaches Tg.
52 ppm/°C
Coefficient of Thermal Expansion (CTE), α2
Coefficient of Thermal Expansion (CTE), α2
CTE α2 (alpha 2) is the slope of the Coefficient of thermal expansion in a temperature range above the Glass transition temperature (Tg).

It explains the extent to which a material will expand after it passes Tg.
200 ppm/°C
Thermal Conductivity
Thermal Conductivity
Thermal conductivity describes the ability of a material to conduct heat. It is required by power packages in order to dissipate heat and maintain stable electrical performance.

Thermal conductivity units are [W/(m K)] in the SI system and [Btu/(hr ft °F)] in the Imperial system.
4.3 W/m.K