Hysol GR300 | Black Epoxy Mold Compound

Harmonization Code : 3907.30.00.90 |   Polyacetals, other polyethers and epoxide resins, in primary forms; polycarbonates, alkyd resins, polyallyl esters and other polyesters, in primary forms : Epoxide resins : Other
Main features
  • Designed for TO220 & TO247 packages
  • Excellent HTRB performance
  • Excellent adhesion to Nickel (Ni) leadframes

Product Description

Hysol GR300 is a black semiconductor-grade epoxy molding compound designed for the encapsulation and protection of TO220 and TO247 power devices. Once molded and post-mold cured, this product provides optimum protection and reliability for these semiconductor devices. It exhibits good HTRB results and strikes an excellent balance of performance and moldability. While it is a great product, new developments have been made since its formulation so you might want also want to take a look at the new and improved Hysol GR30 that has better moldability and electrical properties.

Hysol GR300 is an environmentally "green" product, meaning that doesn't contain any bromine, antimony or phosphorus flame retardants. Previous MG-series EMC dominated the space for power semiconductors but used halogen-containing flame retardants. This next generation epoxy mold compound replaces these older generation products. This material is designed to achieve JEDEC Level 1 requirements at 260°C reflow temperature on Nickel or Nickel-plated leadframes. Hysol GR300 meets UL 94 V-0 Flammability at 1/8 inch (3.18mm) thickness.

Product Family
GR300  
Pellet
35 mm
40 gr
15 kg

Catalog Product

Unlike other products we offer, the products listed on this page cannot currently be ordered directly from the website.
Shipping in 12 weeks Shipping in 12 weeks Shipping in 12 weeks

Technical Specifications

General Properties
Color
Color
The color
Black
Filler Content 80 %
Specific Gravity
Specific Gravity
Specific gravity (SG) is the ratio of the density of a substance to the density of a reference substance; equivalently, it is the ratio of the mass of a substance to the mass of a reference substance for the same given volume.

For liquids, the reference substance is almost always water (1), while for gases, it is air (1.18) at room temperature. Specific gravity is unitless.
1.94
Shelf Life
Shelf Life @ 5°C 183 days
Electrical Properties
Volume Resistivity
Volume Resistivity
Volume resistivity, also called volume resistance, bulk resistance or bulk resistivity is a thickness dependent measurement of the resistivity of a material perpendicular to the plane of the surface.
2.7x1016 Ohms⋅cm
Thermal Properties
Glass Transition Temperature (Tg)
Glass Transition Temperature (Tg)
The glass transition temperature for organic adhesives is a temperature region where the polymers change from glassy and brittle to soft and rubbery. Increasing the temperature further continues the softening process as the viscosity drops too. Temperatures between the glass transition temperature and below the decomposition point of the adhesive are the best region for bonding.

The glass-transition temperature Tg of a material characterizes the range of temperatures over which this glass transition occurs.
185 °C
Thermal Conductivity
Thermal Conductivity
Thermal conductivity describes the ability of a material to conduct heat. It is required by power packages in order to dissipate heat and maintain stable electrical performance.

Thermal conductivity units are [W/(m K)] in the SI system and [Btu/(hr ft °F)] in the Imperial system.
0.95 W/m.K
UL 94 Rating
UL 94 Rating
Flammability rating classification.
It determines how fast a material burns or extinguishes once it is ignited.

HB: slow burning on a horizontal specimen; burning rate less than 76 mm/min for thickness less than 3 mm or burning stops before 100 mm
V-2: burning stops within 30 seconds on a vertical specimen; drips of flaming particles are allowed.
V-1: burning stops within 30 seconds on a vertical specimen; drips of particles allowed as long as they are not inflamed.
V-0: burning stops within 10 seconds on a vertical specimen; drips of particles allowed as long as they are not inflamed.
5VB: burning stops within 60 seconds on a vertical specimen; no drips allowed; plaque specimens may develop a hole.
5VA: burning stops within 60 seconds on a vertical specimen; no drips allowed; plaque specimens may not develop a hole
V0
Coefficient of Thermal Expansion (CTE)
Coefficient of Thermal Expansion (CTE), α1
Coefficient of Thermal Expansion (CTE), α1
CTE α1 (alpha 1) is the slope of the Coefficient of thermal expansion in a temperature range below the Glass transition temperature (Tg).

It explains how much a material will expand until it reaches Tg.
12 ppm/°C
Coefficient of Thermal Expansion (CTE), α2
Coefficient of Thermal Expansion (CTE), α2
CTE α2 (alpha 2) is the slope of the Coefficient of thermal expansion in a temperature range above the Glass transition temperature (Tg).

It explains the extent to which a material will expand after it passes Tg.
51 ppm/°C
Gel Time
Gel Time @ 175°C / 347°F 19 s
Mechanical Properties
Flexural Modulus
Flexural Modulus @ 25°C 15142 N/mm2
Flexural Strength
Flexural Strength @ 25°C
Flexural Strength @ 25°C
Flexural strength, also known as modulus of rupture, or bend strength, or transverse rupture strength is a material property, defined as the stress in a material just before it yields in a flexure test. This is the flexural strength tested at Room Temperature, 25°C
125 N/mm2
Storage (DMA) Modulus
Storage (DMA) Modulus @ 175°C 3671 N/mm2
Storage (DMA) Modulus @ 25°C 18042 N/mm2
Storage (DMA) Modulus @ 260°C 1355 N/mm2
Hardness
Hot Hardness, Shore D @ 175°C 84
Chemical Properties
Moisture absorption 0.33 %
Ionic Content
Chloride (Cl-)
Chloride (Cl-)
The amount of Chloride (Cl-) ion extracted from the product in parts per million (ppm)
9.3 ppm
Sodium (Na+)
Sodium (Na+)
The amount of Sodium (Na+) ion extracted from the product in parts per million (ppm)
4.5 ppm
Curing Conditions
Transfer Pressure 40 - 100 kg/cm2
Transfer Time 5 - 30 s
Post Mold Cure
Post Mold Cure @ 175°C / 347°F 4 - 8 hrs
Curing Schedule
Curing Time @ 175°C / 347°F 120 s
Mold Temperature 175 - 190 °C
Preheat Temperature 70 - 90 °C
Physical Properties
Spiral Flow @ 175°C 34 cm

Additional Information

Designed for TO220 & TO247 devices

TO220 and TO247 are big, bulky packages, so molding these products with a standard mold compound is fairly easy without using any fine fillers. The trouble with these packages however is that epoxy mold compounds used typically fail Hig Temperature Reverse Bias (HTRB) testing, which exposes the device to humidity and temperature while the device is under BIAS. Devices often experience "gate leakage" under these conditions and fail catastrophically.

Furthermore, these devices are often used using a Nickel (Ni) leadframe, which is very difficult to adhere to. Therefore, epoxy moldng compound must have a very good adhesion to Nickel to achieve MSL1 preconditoning.

Recently Viewed Products