• x

LOCTITE ABLESTIK 5020K

Harmonization Code : 3920.99.28.90 |   Other plates, sheets, film, foil and strip, of plastics, non-cellular and not reinforced, laminated, supported or similarly combined with other materials ; Of other plastics ; Other; Other
Main features
  • Non conductive film
  • Assembly applications
  • Thermally conductive

Product Description

LOCTITE ABLESTIK 5020K glass supported epoxy film is a higher purity version of older ABLEFILM grades. It is designed for substrate attach and sealing microelectronic packages. This adhesive film meets the requirements of MIL-STD-883, Method 5011.

LOCTITE ABLESTIK 5020K Non conductive adhesive film cures in 1hour @ 150°C and comes in various thicknesses. It is available in sheet stock or die cut preforms and can be die cut to customer specifications.

Cure Schedule

  • 1 hour @ 150°C
Product Family
5020K  
8 x 12 inch sheet
0.127 mm

Catalog Product

Unlike other products we offer, the products listed on this page cannot currently be ordered directly from the website.
Shipping in 8 - 12 weeks Not Available

Technical Specifications

General Properties
Outgassing
CVCM
CVCM
Collected Volatile Condensable Materials
0.02 %
TML
TML
Total Mass Loss
0.24 %
Shelf Life
Shelf Life
Shelf life is the amount of time after manufacturing that a product is guaranteed to retain its properties.

It differs vastly per product and it is based on temperature and storage conditions.

The properties can be guaranteed for the temperature and time range indicated on the TDS since those are the ones tested to be the best for the product.
Shelf Life @ -40°C 365 days
Work life @25°C
Work life @25°C
Work life is the amount of time we have to work with a material until it is no longer able to be easily worked and applied on a substrate.

It is based on the change in viscosity and it can rely on the application requirements.
4320 hours
Chemical Properties
Ionic Content
Chloride (Cl-)
Chloride (Cl-)
The amount of Chloride (Cl-) ion extracted from the product in parts per million (ppm)
60 ppm
Potassium (K+)
Potassium (K+)
The amount of Potassium (K+) ion extracted from the product in parts per million (ppm)
1 ppm
Sodium (Na+)
Sodium (Na+)
The amount of Sodium (Na+) ion extracted from the product in parts per million (ppm)
20 ppm
Water Extract pH 5.6
Electrical Properties
Volume Resistivity
Volume Resistivity
Volume resistivity, also called volume resistance, bulk resistance or bulk resistivity is a thickness dependent measurement of the resistivity of a material perpendicular to the plane of the surface.
8.0x1015 Ohms⋅cm
Thermal Properties
Coefficient of Thermal Expansion (CTE)
Coefficient of Thermal Expansion (CTE)
CTE (Coefficient of thermal expansion) is a material property that is indicative of the extent to which a material expands with a change in temperature. This can be a change in length, area or volume, depending on the material.

Knowing the CTE of the layers is helpful in analyzing stresses that might occur when a
system consists of an adhesive plus some other solid component.
Coefficient of Thermal Expansion (CTE), α1
Coefficient of Thermal Expansion (CTE), α1
CTE α1 (alpha 1) is the slope of the Coefficient of thermal expansion in a temperature range below the Glass transition temperature (Tg).

It explains how much a material will expand until it reaches Tg.
45 ppm/°C
Coefficient of Thermal Expansion (CTE), α2
Coefficient of Thermal Expansion (CTE), α2
CTE α2 (alpha 2) is the slope of the Coefficient of thermal expansion in a temperature range above the Glass transition temperature (Tg).

It explains the extent to which a material will expand after it passes Tg.
270 ppm/°C
Glass Transition Temperature (Tg)
Glass Transition Temperature (Tg)
The glass transition temperature for organic adhesives is a temperature region where the polymers change from glassy and brittle to soft and rubbery. Increasing the temperature further continues the softening process as the viscosity drops too. Temperatures between the glass transition temperature and below the decomposition point of the adhesive are the best region for bonding.

The glass-transition temperature Tg of a material characterizes the range of temperatures over which this glass transition occurs.
109 °C
Thermal Conductivity
Thermal Conductivity
Thermal conductivity describes the ability of a material to conduct heat. It is required by power packages in order to dissipate heat and maintain stable electrical performance.

Thermal conductivity units are [W/(m K)] in the SI system and [Btu/(hr ft °F)] in the Imperial system.
0.7 W/m.K
Weight Loss
Weight Loss @ 300°C 0.3 %