• x

Hysol GR2710 | Gold Epoxy Mold Compound

Harmonization Code : 3907.30.00.90 |   Polyacetals, other polyethers and epoxide resins, in primary forms; polycarbonates, alkyd resins, polyallyl esters and other polyesters, in primary forms : Epoxide resins : Other
Main features
  • For conductive polymer and AO capacitors
  • Excellent thin wall crack resistance
  • Fast cure for automold equipment

Product Description

Hysol GR2710 is a gold semiconductor-grade epoxy molding compound designed for the encapsulation and protection of Conductive Polymer Capacitors and Aluminum Organic (AO) capacitors. Once molded and post-mold cured, this product provides optimum protection and reliability for these capacitor devices.

Hysol GR2710 is designed for Polymer Conductive and Aluminum Organic Capacitors. These devices offer very high capacitance in a very small size. Epoxy molding compounds designed for these packages must have very low stress and very good thin wall crack resistance so that they can achieve the appropriate MSL performance, something that GR2710 promptly exhibits.

Hysol GR2710 is a High Tg, environmentally "green" product, meaning that it doesn't contain any halogens including bromine, antimony or phosphorus flame retardants. This next generation epoxy mold compound replaces these older generation products. It is designed to achieve JEDEC Level 1 requirements at 260°C reflow temperature on Aluminum Organic (AO) capacitors as well as conductive polymer capacitors. Its fast cure time also ensures that it is compatible with the latest automold manufacturing equipment. 

Product Family
GR2710  
Pellet
14.3 mm 14 mm
4.4 gr 5.7 gr 5 gr 3.2 gr

Catalog Product

Unlike other products we offer, the products listed on this page cannot currently be ordered directly from the website.
Shipping in 8 - 12 weeks Shipping in 8 - 12 weeks

Technical Specifications

General Properties
Color
Color
The color
Gold
Filler Content 81.7 %
Specific Gravity
Specific Gravity
Specific gravity (SG) is the ratio of the density of a substance to the density of a reference substance; equivalently, it is the ratio of the mass of a substance to the mass of a reference substance for the same given volume.

For liquids, the reference substance is almost always water (1), while for gases, it is air (1.18) at room temperature. Specific gravity is unitless.
1.93
Shelf Life
Shelf Life
Shelf life is the amount of time after manufacturing that a product is guaranteed to retain its properties.

It differs vastly per product and it is based on temperature and storage conditions.

The properties can be guaranteed for the temperature and time range indicated on the TDS since those are the ones tested to be the best for the product.
Shelf Life @ 5°C 365 days
Chemical Properties
Extractable Ionic Content, after 20 hours
Chloride (Cl-)
Chloride (Cl-)
The amount of Chloride (Cl-) ion extracted from the product in parts per million (ppm)
8 ppm
Sodium (Na+)
Sodium (Na+)
The amount of Sodium (Na+) ion extracted from the product in parts per million (ppm)
5 ppm
Mechanical Properties
Water Extract Data, 20hrs water boil
Water Extract Data, 20hrs water boil
Water Extract Data, 20hrs water boil
Conductivity 2.5 mmhos/cm
pH of extract 5.5
Flexural Modulus
Flexural Modulus @ 25°C 17927 N/mm2
Flexural Strength
Flexural Strength @ 25°C
Flexural Strength @ 25°C
Flexural strength, also known as modulus of rupture, or bend strength, or transverse rupture strength is a material property, defined as the stress in a material just before it yields in a flexure test. This is the flexural strength tested at Room Temperature, 25°C
131 N/mm2
Hardness
Hardness
Hardness is a dimensionless quantity. There is no direct relationship between measurements in one scale and their equivalent in another scale or another hardness test.
Hot Hardness, Shore D @ 175°C / 347°F after 90 seconds 85
Molded Shrinkage 0.14 %
Electrical Properties
Volume Resistivity
Volume Resistivity
Volume resistivity, also called volume resistance, bulk resistance or bulk resistivity is a thickness dependent measurement of the resistivity of a material perpendicular to the plane of the surface.
1.0x1016 Ohms⋅cm
Thermal Properties
Coefficient of Thermal Expansion (CTE)
Coefficient of Thermal Expansion (CTE)
CTE (Coefficient of thermal expansion) is a material property that is indicative of the extent to which a material expands with a change in temperature. This can be a change in length, area or volume, depending on the material.

Knowing the CTE of the layers is helpful in analyzing stresses that might occur when a
system consists of an adhesive plus some other solid component.
Coefficient of Thermal Expansion (CTE), α1
Coefficient of Thermal Expansion (CTE), α1
CTE α1 (alpha 1) is the slope of the Coefficient of thermal expansion in a temperature range below the Glass transition temperature (Tg).

It explains how much a material will expand until it reaches Tg.
13 ppm/°C
Coefficient of Thermal Expansion (CTE), α2
Coefficient of Thermal Expansion (CTE), α2
CTE α2 (alpha 2) is the slope of the Coefficient of thermal expansion in a temperature range above the Glass transition temperature (Tg).

It explains the extent to which a material will expand after it passes Tg.
51 ppm/°C
Gel Time
Gel Time
Gel time is the time it takes for a material to reach such a high viscosity (gel like) that it is no longer workable.

It is usually measured for different temperature conditions and even though it does not refer to full cure it is advisable to never move or manipulate the material after it reached its gel time since it can lose its desired end properties.
Gel Time @ 175°C / 347°F 15 s
Glass Transition Temperature (Tg)
Glass Transition Temperature (Tg)
The glass transition temperature for organic adhesives is a temperature region where the polymers change from glassy and brittle to soft and rubbery. Increasing the temperature further continues the softening process as the viscosity drops too. Temperatures between the glass transition temperature and below the decomposition point of the adhesive are the best region for bonding.

The glass-transition temperature Tg of a material characterizes the range of temperatures over which this glass transition occurs.
161 °C
Spiral Flow
Spiral Flow @ 175°C 105 cm
UL94 Rating
UL94 @ 1/4 inch V0
Curing Conditions
Curing Time
Curing Time @ 175°C / 347°F 70 - 95 s
Curing Time @ 175°C / 347°F (Automold) 50 - 70 s
Mold Temperature 140 - 180 °C
Preheat Temperature 80 - 95 °C
Transfer Pressure 40 - 85 kg/cm2
Transfer Time 6 - 15 s
Post Mold Cure
Post Mold Cure @ 175°C / 347°F 2 - 6 hrs