LOCTITE ECCOBOND 3707

Harmonization Code : 3506.10.00.00 |   Prepared glues and other prepared adhesives, not elsewhere specified or included; products suitable for use as glues or adhesives, put up for retail sale as glues or adhesives, not exceeding a net weight of 1 kg
Main features
  • UV & Heat cure
  • One component
  • BGA cornerbond

Product Description

LOCTITE ECCOBOND 3707 UV curable edgebond is designed for bonding various types of electronic components on a PCB. It mainly plays a structural role in the packaging process.

LOCTITE ECCOBOND 3707 is a white, single component epoxy that is typically used for UV Curable CSP (Chip Scale Packages) and as a BGA (Ball Grid Array) Cornerbond.

UV Cure:

  • >3,000mJ or
  • >30 seconds @ 100 mW/cm²

Minimum intensity of 100 mW/cm² is recommended for the UV lamp

Oven Cure:

  • 2 minutes @ 130°C
Product Family
3707  
30cc Syringe

Catalog Product

Unlike other products we offer, the products listed on this page cannot currently be ordered directly from the website.

Technical Specifications

General Properties
Curing Schedule
Curing Schedule
Curing schedule is the time and temperature required for a mixed material to fully cure. While this applies to materials that cure with heat, there are also other materials that can be cured with UV.

Even though some materials can cure on ambient temperatures, others will require elevated temperature conditions to properly cure.

There are various curing schedules depending on the material type and application. For heat curing, the most common ones are Snap cure, Low temperature cure, Step cure and Staged cure.

Recommended cure type, schedule, time and temperature can always be found on the Technical data sheets.
Cure Type UV Cure
Pot Life
Pot Life
Pot life is the amount of time it takes for the viscosity of a material to double (or quadruple for lower viscosity materials) in room temperature after a material is mixed.

It is closely related to work life but it is not application dependent, less precise and more of a general indication of how fast a system is going to cure.
168 hours
Physical Properties
Viscosity
Viscosity
Viscosity is a measurement of a fluid’s resistance to flow.

Viscosity is commonly measured in centiPoise (cP). One cP is defined as
the viscosity of water and all other viscosities are derived from this base. MPa is another common unit with a 1:1 conversion to cP.

A product like honey would have a much higher viscosity -around 10,000 cPs-
compared to water. As a result, honey would flow much slower out of a tipped glass than
water would.

The viscosity of a material can be decreased with an increase in temperature in
order to better suit an application
9,595 mPa.s
Thermal Properties
Coefficient of Thermal Expansion (CTE)
Coefficient of Thermal Expansion (CTE)
CTE (Coefficient of thermal expansion) is a material property that is indicative of the extent to which a material expands with a change in temperature. This can be a change in length, area or volume, depending on the material.

Knowing the CTE of the layers is helpful in analyzing stresses that might occur when a
system consists of an adhesive plus some other solid component.
Coefficient of Thermal Expansion (CTE), α1
Coefficient of Thermal Expansion (CTE), α1
CTE α1 (alpha 1) is the slope of the Coefficient of thermal expansion in a temperature range below the Glass transition temperature (Tg).

It explains how much a material will expand until it reaches Tg.
52 ppm/°C
Coefficient of Thermal Expansion (CTE), α2
Coefficient of Thermal Expansion (CTE), α2
CTE α2 (alpha 2) is the slope of the Coefficient of thermal expansion in a temperature range above the Glass transition temperature (Tg).

It explains the extent to which a material will expand after it passes Tg.
151 ppm/°C
Glass Transition Temperature (Tg)
Glass Transition Temperature (Tg)
The glass transition temperature for organic adhesives is a temperature region where the polymers change from glassy and brittle to soft and rubbery. Increasing the temperature further continues the softening process as the viscosity drops too. Temperatures between the glass transition temperature and below the decomposition point of the adhesive are the best region for bonding.

The glass-transition temperature Tg of a material characterizes the range of temperatures over which this glass transition occurs.
53 °C

Additional Information

UV/Light Cure Strengths

  • One component
  • No solvents
  • Very fast room temperature cure
  • Cure on demand-facilitates parts alignment
  • Less equipment space and energy
  • Fast through put-low WIP

 

UV/Light Cure Limitations

  • Sensitive to light-requires special space lighting
  • Oxygen inhibits cure
  • Line of sight cure- shadowed areas require secondary cure
  • High CTE- fillers used to lower CTE block UV/light